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This paper presents a brief review of previous developments in substructure synthesis
methods using frequency response functions and proposes a new coupling analysis
approach which takes into account the effect of elastic media between substructures}the
so-called general joint description method (GJDM). The theoretical basis of the new
method is presented here and applications are demonstrated via two numerical simulations.
The elastic media between substructures, i.e., the joints, are described by general impedance
matrices which have only boundary degrees of freedom. The introduction of elastic media
into coupling analyses can reduce errors caused by improper treatment of joints in
conventional coupling analysis methods and can also provide a solution for non-
conforming interfaces, where the numbers of degrees of freedom at the interfaces of two
substructures are not consistent. In addition, the new method enables the dynamic
behaviour of an assembled structure be easily tuned by changing the joint parameters only.
These advantages show that the GJDM is an efficient and versatile tool in substructure
synthesis analyses.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Component mode synthesis (CMS) techniques have been developed and used extensively
in the dynamic analysis of structures for over three decades. The original idea was to
describe a structural system as an assembly of discrete structural components or
substructures, thereby obtaining sets of matrix equations which predict the modal
properties of the assembly. With the development of the finite element method and more
powerful computers, the fundamental idea was then implemented and applied in practice
in the 1960s and 1970s [1]. If CMS is mainly based on modal models derived either from
spatial models, or resulting from a modal identification routine [2], the frequency response
function (FRF)-based coupling method is then basically built on experimental models or,
in other words, response models. In fact, since the different types of models can be
interrelated with each other [3], both coupling methods allow the use of a combination of
analytical and experimental data. Compared with the CMS method, FRF coupling has the
advantage of being able to use the measured FRFs directly, which implies that all errors
introduced by modal analysis, and the errors caused by high mode truncation, could be
eliminated since the effects of the higher modes are naturally included in the measured
response data.

The widely used expression of the FRF coupling method [4] connects two substructures
rigidly at the coupling co-ordinates. Other coupling methods, either in the group of
impedance coupling (spatial coupling method) or modal coupling (free interface and fixed
interface methods), follow the same compatibility condition of displacement as well.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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To refine the general coupling analysis techniques, more researches on some specific
aspects have been carried out. For instance, Otte et al. [5] proposed two data reduction
methods to enhance measured FRFs for coupling in the spatial and frequency domains,
respectively, since the computed FRFs of an assembled structure may be contaminated by
errors. These methods are based on singular-value decomposition (SVD) and resolve the
problems of ill-conditioned matrix inversion and the influence of noise. Three sources of
error are normally encountered: (1) the inconsistencies of measured data (noise, frequency
shifts), (2) the inability to measure correctly all d.o.f.s of the connection, and (3) the ill-
conditioned matrix inversion for a large numbers of d.o.f.s. Suatez [6] introduced a force
derivative method to compensate for the effect of the truncated higher modes in the
representation of the substructures’ response. It was demonstrated that the method is
capable of providing very accurate estimates of the natural frequencies of the combined
structure as well as the associated modes of vibration and elastic forces.

It is worth pointing out here that the essential principles in those methods mentioned
above are similar to the FRF coupling method in respect of their treatment of the
connections between substructures, i.e., they presume the same compatibility conditions of
displacement at the interfaces of the connections. The substructures for numerical
simulation were designed to meet the required conditions and, therefore, the solutions of
coupled structure analysis were satisfactory. Practically, however, the accurate analysis of
coupled structures requires not only high-quality substructure data estimation but also the
reliable modelling of the joints which connect the substructures. If the rigid connection
assumption does not adequately describe the characteristics of realistic joints, it is clear
that the FRFs obtained from the coupling analysis will certainly differ from the
experimental results of the corresponding assembled structure, no matter how fine the
algorithms are.

Basically, the theory of coupled structure analysis developed so far has not taken full
account of the effect of practical joints. The effect of joints should be estimated carefully
and the joint models should be established and the theory of substructure coupling
analysis should be developed further to include proper joint effects.

2. REVIEW OF THE ESSENTIAL PRINCIPLES

The currently used FRF coupling method was systematically presented by Jetmundsen
et al. [4] but the initial idea of the method can be traced back to 1960 in the book by
Bishop and Johnson [7].

2.1. FRF COUPLING WITHOUT JOINT

The conventional mathematical expression of FRF coupling method is well known [4]
as

H ¼

AHii AHic 0

AHci AHcc 0

0 0 BHii

2
6664

3
7775�

AHic

AHcc

�BHic

2
6664

3
7775½AHcc þ BHcc��1½AHci AHcc �BHci�; ð1Þ

in which H is the FRF matrix of the assembled structure, AH; BH are the FRF matrices of
substructures A and B, respectively. Subscript i represents internal d.o.f.s and c denotes
the coupling (interface) d.o.f.s.
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If the FRF matrix of the coupled structure has the form

H ¼

Haa Hac Hab

Hca Hcc Hcb

Hba Hbc Hbb

2
664

3
775; ð2Þ

then each submatrix can be expressed individually as

Haa ¼A Hii �A Hic½AHcc þB Hcc��1
AHci;

Hac ¼A Hic �A Hic½AHcc þB Hcc��1
AHcc;

Hab ¼A Hic½AHcc þB Hcc��1
BHci;

Hcc ¼A Hcc �A Hcc½AHcc þB Hcc��1
AHcc;

Hcb ¼A Hcc½AHcc þB Hcc��1
BHci;

Hbb ¼B Hii �B Hic½AHcc þB Hcc��1
BHci ð3Þ

and by symmetry,

Hca ¼ HT
ac; Hba ¼ HT

ab; Hbc ¼ HT
cb: ð4Þ

2.2. FRF COUPLING WITH JOINT

The FRF coupling method presented in equation (1) does not allow for the effect of any
medium between substructures. A method of FRF coupling with joints was recently
reported by Ferreira [8], in which the description of substructures and their assembly is the
same as that mentioned in reference [9]. The new development of the method in reference
[8], in respect of the substructure coupling analysis, lies in the joint description and
synthesis with substructures. However, it can be seen in the derivation process of the
coupling method in reference [8] that the expressions for the forces applied on the
substructures, f %cc and f *cc; are not unique. It seems that the solution should be consistent
only if the joint describing function, Z; is infinite or, in other words, if Z�1 ¼ 0: Obviously,
this condition conflicts with the purpose of the coupling analysis and, therefore, there must
be an error in the derivation.

In fact, the joint model expression given in reference [8] is

�
f %cc

f *cc

( )
¼

Z �Z

�Z Z

" #
x%cc

x*cc

( )
: ð5Þ

This joint model is based on two essential assumptions (which are not explicitly mentioned
in reference [8]): the first assumption is that the equilibrium and compatibility conditions
are given in the form of

f %cc

f *cc

( )
¼ �

%ff

*ff

8<
:

9=
; and

x%cc

x*cc

( )
¼

%xx

*xx

( )
ð6Þ

and the second assumption is that the stiffness matrix of the joint has to take the specific
form of

K ¼
Z �Z

�Z Z

" #
: ð7Þ
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Expression (5) implies that the joints between the substructures can only be parallel scalar
massless springs and/or dampers.

According to the proposed equilibrium conditions in reference [8], the external forces
applied at the interfaces of the assembled structure have always to be zero:

F %CC ¼ F *CC ¼ f %cc þ f *cc � 0: ð8Þ

Therefore, when these basic assumptions are used in the derivations, the two sets of forces,
F%cc and F *cc; appearing in the expressions of f %cc and f *cc; can have arbitrary coefficients without
affecting the values of f %cc and f *cc: That is why the solutions are not unique.

3. GENERAL JOINT DESCRIPTION METHOD}NEW DEVELOPMENT

3.1. BACKGROUND THEORY

To correct the equilibrium condition used in reference [8], and to employ a general joint
description matrix, a generalized joint description method (GJDM) for substructure
coupling analysis is derived in this section, starting from joint description.

3.1.1. Joint description

A joint can be analytically described as

f ¼ Zx; ð9Þ

where

f ¼
%ff

*ff

8<
:

9=
;; x ¼

x%cc

x*cc

8<
:

9=
; ð10Þ

and Z is the impedance matrix of the joint. Since it is normally symmetric, such that

Z ¼
Z%cc%cc Z%cc*cc

Z*cc%cc Z*cc*cc

2
4

3
5 ð11Þ

with Z%cc%cc ¼ ZT
%cc%cc; Z%cc*cc ¼ ZT

*cc%cc and Z*cc*cc ¼ ZT
*cc*cc:

The joint has no internal degrees of freedom: all of its degrees of freedom are on its
boundaries. If the number of degrees of freedom at the boundary of substructure A equals
that on the boundary of substructure B, then n%cc ¼ n*cc; and Z%cc*cc is a square matrix.
Otherwise, in more general cases, if n%cc=n*cc; Z%cc*cc is rectangular.

3.1.2. Conditions of compatibility and equilibrium

The displacement vector of the joint, x; satisfies the compatibility condition

x%cc

x*cc

8<
:

9=
; ¼

x%cc

x*cc

8<
:

9=
; ð12Þ

and the force vector, f; satisfies the equilibrium condition at the coupling interfaces

f %cc

f *cc

8<
:

9=
; ¼

F %CC

F *CC

8<
:

9=
;�

%ff

*ff

8<
:

9=
;; ð13Þ
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where F %CC and F *CC are the external forces acting on the interface d.o.f.s. When there are no
external forces applied on the interface d.o.f.s, equation (13) becomes

f ¼ �
f %cc

f *cc

8<
:

9=
;: ð14Þ

3.1.3. Description of substructures

To describe each of the uncoupled substructures, one can write the displacement vector
as

xi

x%cc

x*cc

8>>><
>>>:

9>>>=
>>>;

¼

Hii Hi %cc Hi *cc

H %cci H %cc%cc H %cc*cc

H *cci H *cc%cc H *cc*cc

2
6664

3
7775

f i

f %cc

f *cc

8>>><
>>>:

9>>>=
>>>;
: ð15Þ

3.1.4. Derivation of the receptance matrix of the coupled structure

Solving for x%cc and x*cc from equation (15) and substituting these into equation (9), gives

Z%cc%ccðH %ccif i þH%cc%ccf %cc þH %cc*ccf *ccÞ þ Z%cc*ccðH *ccif i þH*cc%ccf %cc þH *cc*ccf *ccÞ ¼ %ff ¼ 0; ð16Þ

Z*cc%ccðH%ccif i þH %cc%ccf %cc þH %cc*ccf *ccÞ þ Z*cc*ccðH *ccif i þH *cc%ccf %cc þH *cc*ccf *ccÞ � *ff ¼ 0: ð17Þ

Substituting equation (13) into equations (16) and (17), and noting that f i ¼ FI ; one has

Z%cc%ccðH %cciFI þH%cc%ccf %cc þH %cc*ccf *ccÞ þ Z%cc*ccðH *cciFI þH*cc%ccf %cc þH *cc*ccf *ccÞ � F %CC þ f %cc ¼ 0; ð18Þ

Z*cc%ccðH %cciFI þH%cc%ccf %cc þH %cc*ccf *ccÞ þ Z*cc*ccðH *cciFI þH*cc%ccf %cc þH *cc*ccf *ccÞ � F *CC þ f *cc ¼ 0: ð19Þ

Rearranging these two equations with respect to the force vectors, gives

a1f %cc þ a2f *cc ¼ F %CC � a3FI ; b1f %cc þ b2f *cc ¼ F *CC � b3FI : ð20; 21Þ

Solving equations (20) and (21), one obtains the force vectors for the uncoupled system
uniquely expressed in terms of the external force vectors of the coupled system as

f %cc ¼ %BB
�1½ðb3 � b2a

�1
2 a3ÞFI þ b2a

�1
2 F %CC � F *CC �; ð22Þ

f *cc ¼ *BB
�1½ða3 � a1b

�1
1 b3ÞFI � F %CC þ a1b

�1
1 F *CC �; ð23Þ

where

a1 ¼ Z%cc%ccH%cc%cc þ Z%cc*ccH*cc%cc þ I; a2 ¼ Z%cc%ccH %cc*cc þ Z%cc*ccH *cc*cc; a3 ¼ Z%cc%ccH %cci þ Z%cc*ccH *cci;

b1 ¼ Z*cc%ccH%cc%cc þ Z*cc*ccH*cc%cc; b2 ¼ Z*cc%ccH%cc*cc þ Z*cc*ccH*cc*cc þ I; b3 ¼ Z*cc%ccH %cci þ Z*cc*ccH *cci;

%BB ¼ b2a
�1
2 a1 � b1; *BB ¼ a1b

�1
1 b2 � a2: ð24Þ

Substituting equations (22) and (23) into equation (15), and using the following
compatibility conditions:

XI ¼ xi; X %CC ¼ x%cc and X *CC ¼ x*cc ð25Þ
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elements in the upper triangle part of the coupled structure’s FRF matrix are obtained as
follows:

HII ¼ Hii þHi %cc
%BB
�1ðb3 � b2a

�1
2 a3Þ þHi *cc

*BB
�1ða3 � a1b

�1
1 b3Þ;

HI %CC ¼ Hi %cc
%BB
�1
b2a

�1
2 �Hi *cc

*BB
�1
; HI *CC ¼ Hi *cc

*BB
�1
a1b

�1
1 �Hi %cc

%BB
�1
;

H %CC %CC ¼ H %cc%cc
%BB
�1
b2a

�1
2 �H %cc*cc

*BB
�1
; H %CC *CC ¼ H %cc*cc

*BB
�1
a1b

�1
1 �H %cc%cc

%BB
�1
;

H *CC *CC ¼ H *cc*cc
*BB
�1
a1b

�1
1 �H *cc%cc

%BB
�1
: ð26Þ

These FRF submatrices can be used to construct the receptance matrix of the coupled
structure

XI

X %CC

X *CC

8>>><
>>>:

9>>>=
>>>;

¼

HII HI %CC HI *CC

H %CCI H %CC %CC H %CC *CC

H *CCI H *CC %CC H *CC *CC

2
6664

3
7775

FI

F %CC

F *CC

8>>><
>>>:

9>>>=
>>>;
; ð27Þ

where

H %CCI ¼ HT
I %CC
; H *CCI ¼ HT

I *CC
; H *CC %CC ¼ HT

%CC *CC
: ð28Þ

3.2. ALGORITHM FOR IMPLEMENTATION OF THE THEORY

The expressions in (24) can be simplified by using the fact that

H %cc*cc ¼ H *cc%cc ¼ 0: ð29Þ

Substituting equation (29) into equation (24), we have

a1 ¼ Z%cc%ccH%cc%cc þ I; a2 ¼ Z%cc*ccH *cc*cc; a3 ¼ Z%cc%ccH %cci þ Z%cc*ccH *cci;

b1 ¼ Z*cc%ccH%cc%cc; b2 ¼ Z*cc*ccH*cc*cc þ I; b3 ¼ Z*cc%ccH %cci þ Z*cc*ccH *cci ð30Þ

and

%BB ¼ H�1
*cc*cc fH *cc*ccðZ*cc*ccZ

þ
%cc*ccZ%cc%cc � Z*cc%ccÞH%cc%cc þ ðH *cc*ccZ*cc*ccZ

þ
%cc*cc þ Zþ

%cc*ccZ%cc%ccH%cc%ccÞ þ Zþ
%cc*ccg;

*BB ¼ H�1
%cc%cc fH %cc%ccðZ%cc%ccZ

þ
*cc%ccZ*cc*cc � Z%cc*ccÞH*cc*cc þ ðH %cc%ccZ%cc%ccZ

þ
*cc%cc þ Zþ

*cc%ccZ*cc*ccH*cc*ccÞ þ Zþ
*cc%ccg; ð31Þ

%BB
þ ¼ fH *cc*ccðZ*cc*ccZ

þ
%cc*ccZ%cc%cc � Z*cc%ccÞH%cc%cc þ ðH *cc*ccZ*cc*ccZ

þ
%cc*cc þ Zþ

%cc*ccZ%cc%ccH%cc%ccÞ þ Zþ
%cc*ccg

þ
H*cc*cc;

*BB
þ ¼ fH %cc%ccðZ%cc%ccZ

þ
*cc%ccZ*cc*cc � Z%cc*ccÞH*cc*cc þ ðH %cc%ccZ%cc%ccZ

þ
*cc%cc þ Zþ

*cc%ccZ*cc*ccH*cc*ccÞ þ Zþ
*cc%ccg

þ
H%cc%cc: ð32Þ

Rewriting equation (32) in a short form, and comparing the expressions in the curly
brackets, we note that if we denote

%BB
þ ¼ DþH*cc*cc; ð33Þ

then

*BB
þ ¼ ðDTÞþH%cc%cc ¼ DþTH %cc%cc: ð34Þ
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Therefore, the FRF submatrices of the coupled structure in equation (26) become

HII ¼ Hii þHi %ccD
þH *cc*ccðb3 � b2a

�1
2 a3Þ þHi *ccD

þTH %cc%ccða3 � a1b
�1
1 b3Þ;

HI %CC ¼ Hi *ccD
þH*cc*ccb2a

�1
2 �Hi *ccD

þTH %cc%cc;

HI *CC ¼ Hi *ccD
þTH %cc%cca1b

�1
1 �Hi %ccD

þH *cc*cc;

H %CC %CC ¼ H%cc%ccD
þH*cc*ccb2a

�1
2 ;

H %CC *CC ¼ �H %cc%ccD
þH *cc*cc; H *CC *CC ¼ H *cc*ccD

þTH %cc%cca1b
�1
1 : ð35Þ

From equation (30), we have

b3 � b2a
�1
2 a3 ¼ H�1

*cc*cc fðH *cc*ccZ*cc%cc �H *cc*ccZ*cc*ccZ
þ
%cc*ccZ%cc%cc � Zþ

%cc*ccZ%cc%ccÞH %cci �H*ccig;

a3 � a1b
�1
1 b3 ¼ H�1

%cc%cc fðH %cc%ccZ%cc*cc �H %cc%ccZ%cc%ccZ
þ
*cc%ccZ*cc*cc � Zþ

*cc%ccZ*cc*ccÞH *cci �H%ccig ð36Þ

and

b2a
�1
2 ¼ H�1

*cc*cc ðH *cc*ccZ*cc*cc þ IÞZþ
%cc*cc; a1b

�1
1 ¼ H�1

%cc%cc ðH %cc%ccZ%cc%cc þ IÞZþ
*cc%cc: ð37Þ

Substituting equations (36) and (37) into equation (35), gives

HII ¼ Hii þHi %ccD
þHa þHi *ccD

þTHb;

HI %CC ¼ Hi %ccD
þHc �Hi *ccD

þTH %cc%cc;

HI *CC ¼ Hi *ccD
þTHd �Hi %ccD

þH *cc*cc;

H %CC %CC ¼ H%cc%ccD
þHc;

H %CC *CC ¼ �H%cc%ccD
þH*cc*cc; H *CC *CC ¼ H *cc*ccD

þTHd ; ð38Þ

where

Ha ¼ ðH *cc*ccZ*cc%cc �H *cc*ccZ*cc*ccZ
þ
%cc*ccZ%cc%cc � Zþ

%cc*ccZ%cc%ccÞH%cci �H *cci;

Hb ¼ ðH %cc%ccZ%cc*cc �H %cc%ccZ%cc%ccZ
þ
*cc%ccZ*cc*cc � Zþ

*cc%ccZ*cc*ccÞH*cci �H %cci;

Hc ¼ ðH *cc*ccZ*cc*cc þ IÞZþ
%cc*cc; Hd ¼ ðH %cc%ccZ%cc%cc þ IÞZþ

*cc%cc: ð39Þ

There is only one inverse operation for the frequency response functions in equation (38),
and that is Dþ: It is the same as the Jetmundsen method as shown in equation (3).
Therefore, the computation time and the sensitivity to noise in the FRF data are basically
the same for both coupling methods. The computation of Zþ

%cc*cc should not present a problem
since matrix Z%cc*cc is given analytically and its size is relatively small.

The pseudo-inverse, Dþ; can be calculated using SVD. Performing an SVD on matrix D;
which has dimension ðn%cc � n*ccÞ; gives

D ¼ USVh: ð40Þ

If the matrix D is ill-conditioned or even singular, the singular-value truncation technique
will be applied by setting a certain threshold value tol and truncating the singular values
which are smaller than tol. If the remaining number of singular values is r; then

Dþ ¼ VrSrU
h
r : ð41Þ

The dimensions of Vr; Sr and Uh
r are ðn*cc � rÞ; ðr � rÞ and ðr � n%ccÞ respectively.
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4. CASE STUDIES

Two numerical case studies are presented in this section. These examples are designed to
emphasize the advantages of the newly developed GJDM for coupling analysis and to
demonstrate the use of the new technique in the stage of product design.

The first case study is designed to show how the properties of typical joint parameters,
mainly stiffness and damping, affect the coupling results. In the second case study, a larger
finite element model is used to investigate the high order mode truncation effect and
tolerance to noisy data. The results in both the cases are compared with those obtained
from the standard Jetmundsen method.

4.1. CROSS BEAM STRUCTURE

4.1.1. Description of the structure

Two identical beams are placed horizontally at right angles and are connected vertically
via another very short beam which plays the role of the joint. The boundary condition of
the assembled structure is free–free as shown in Figure 1. The lower beam is substructure
A and the upper beam is substructure B. The length of each of the substructures is 419 mm
and the length of the joint is 3 mm: The cross-section of the substructures is rectangular,
30 mm � 5 mm: The cross-section of the joint beam is circular with diameter f ¼ 8 mm:

Each substructure model is divided evenly into 10 Timoshenko beam elements. The joint
is described by a single beam element which has six degrees of freedom at each end and
whose mass and stiffness matrices are formed by a standard finite element model.
Proportional damping is introduced to generate complex frequency response functions for
both substructures and to model the joint. The assumed proportional viscous damping
model for the joint is described by

c ¼ bk: ð42Þ
If the mass of the joint is neglected, then the describing matrix of the joint becomes

ZðoÞ ¼ kþ ioc ¼ kð1 þ iobÞ: ð43Þ

4.1.2. Coupling analysis by using GJDM

To validate the GJDM for coupled structure analysis, i.e., its theory and algorithm, the
coupling analysis result is compared with that of the complete assembled finite element
Figure 1. Cross beam structure.
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model. In this comparison, the joint parameters prepared for coupling analysis are set to
be the same as those used in the assembled finite element model. Based on noise-free input
FRFs, all the frequency response functions of the assembled structure are predicted
accurately. One of the predicted FRFs is given in Figure 2 overlaid on the corresponding
exact result.

One of the advantages of the GJDM is that the joint parameters can be modified
independently. This advantage makes it possible for the dynamic characteristics of a
structure to be tuned to some extent by varying the joint parameters only. In other words,
the joints, which are normally the most difficult parts in finite element modelling, can be
completely separated from the substructures and studied independently. After the joint
parameters are properly adjusted, they can be used together with frequency response
functions of the individual substructures to implement the coupling analysis. In the case
shown in Figure 1, for instance, if we increase the damping of the joint by setting a larger b
value in equation (42), b ¼ 1 � 10�5; the coupling analysis will then perform the effect of
this perturbation, as shown in Figure 3 in which the proportional damping factor for the
assembled structure is 5 � 10�7:

The flexibility of changing joint parameters cannot be so easily achieved in the
assembled finite element model. This means that the new coupling analysis not only saves
computation cost by breaking down a large structure into smaller substructures, but also
solves problems which cannot be worked out efficiently using the assembled finite element
model.

4.1.3. Application of Jetmundsen coupling method

If this same coupling problem is dealt with using the Jetmundsen coupling method, the
joint has to be assigned to belong to one of the substructures. This will generally bring the
problem that the modification of joint parameters will no longer be achieved so flexibly.
Any small change of joint parameters will result in the need for a reanalysis of the
substructure to which the joint is attached. This is time consuming if the number of
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Figure 2. Validation of GJDM: � � � � ; assembled FE; }}, GJDM coupling.
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Figure 3. Coupling result of increasing the joint damping: � � � � ; assembled FE; }}, GJDM coupling.
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degrees of freedom of the substructure is large or if the modification needs to be done a
number of times.

In this simple case, the coupling result of the Jetmundsen method can be as accurate as
that of the new method, as shown in Figure 2. The tolerance to noisy input data is also
more or less the same, according to the analysis in section 3. More detail comparisons
between these two FRF coupling methods will be given and discussed next for a more
complicated case study, a plate coupled with a beam.

4.2. PLATE COUPLED TO BEAM

4.2.1. Description of the structure

The second case study is based on a brass plate shown in Figure 4 and a brass beam
shown in Figure 5 which are coupled together using a steel bolt. The alignment of the
coupled system is shown in Figure 6. The detail of the connection joint is shown in
Figure 7 where the size of the steel bolt is M4. The material properties of the structure are
listed in Table 1.

4.2.2. Coupling analysis 1: Jetmundsen method

The plate is taken as substructure A and the beam together with the bolt are taken as
substructure B. The FRFs of the two substructures, A and B, are generated from the
modal analysis of their finite element models. The 4-node 20-d.o.f. plate elements are used
to model the plate, and Timoshenko beam elements are used to analyze the beam,
substructure B (see Figure 8). FRFs were generated using the mode superposition method:
the numbers of modes used were:

mA ¼ 300 ð90 kHzÞ and mB ¼ 50 ð20 kHzÞ:
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Figure 4. Brass plate, thickness 3 mm:
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Figure 6. The assembled structure.

SUBSTRUCTURE SYNTHESIS 371



plate

beam

Figure 7. Bolt connection.

Table 1

Material properties

Material Young’s modulus The Poisson ratio Density

Brass 1�10� 1011 N=m2 0�29 8�54 � 103 kg=m3

Steel 2�10� 1011 N=m2 0�30 7�80 � 103 kg=m3

Figure 8. FE mesh for coupling analysis.
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FRFs of the coupled structure were obtained by implementing the analysis based on the
Jetmundsen method. Input data were the FRFs of the substructures. The result is
compared with the ‘‘exact’’ FRFs which were produced by analyzing the finite element
model of the whole assembled structure. One FRF from the coupling analysis results, the
point FRF H5z5z; i.e., the translation point FRF in the z direction of node 5, which is the
coupling node on the plate, is shown in Figure 9 overlaid with its corresponding ‘‘exact’’
FRF. It is seen that the Jetmundsen method works well in general, except for the
frequency shift in the frequency range of 800–1200 Hz:

4.2.3. Coupling analysis 2: general joint description method

In this analysis, the plate is still taken as substructure A but the beam alone is taken as
substructure B, excluding the bolted joint. FRFs of the two substructures, A and B, are
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also generated from the modal analyses of their finite element models using mode
superposition method.

The bolt which connects plate and beam is defined by a beam element. Since the mass of
the bolt is very small compared with either of the substructures (the plate or the beam),
only the bolt stiffness is taken into account to construct the joint description impedance
matrix, Z: The compatibility of degrees of freedom is considered in forming the matrix, Z:
The beam element has six d.o.f.s at the boundary connecting it to the beam ðn*cc ¼ 6Þ and
five d.o.f.s at the boundary connecting it to the plate ðn%cc ¼ 5Þ: Therefore, the dimension of
matrix Z is ð11 � 11Þ:

FRFs of the coupled structure were obtained by implementing the programme of the
general joint description method. Input data were the FRFs of the substructures as well as
the joint description matrix, Z: The result was validated by the ‘‘exact’’ FRFs which were
produced by analyzing the finite element model of the whole assembled structure. One
FRF of the coupled structure analysis results, the point FRF, H5z5z; which is the coupling
node on the plate, is shown in Figure 10 overlaid with its corresponding ‘‘exact’’ FRF. It is
clear from Figure 10 that the coupling analysis yields a very good result. There are no
significant frequency shifts as shown in Figure 9.

4.2.4. Substructure residual effect

It should be pointed out that there is no substructure residual effect to the coupling
analysis result if measured FRFs are used. However, in a numerical study as that
presented in this section, it is an important issue for discussion. The numbers of modes
used for substructures A and B were 320 and 186, respectively, while the coupling result
shown in Figure 10 was achieved by using only the first 300 modes from substructure A
and the first 50 modes from substructure B.

To investigate the substructure residual effect, the number of modes used in generating
the FRFs was varied. Table 2 shows the numbers of modes of substructure A (plate) which
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Figure 9. Point FRF H5z5z obtained from the Jetmundsen coupling analysis. }} Jetmundsen method; � � � � ;
assembled FE.
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Figure 10. Point FRF H5z5z obtained from the GJDM coupling analysis: � � � � ; assembled FE; }}, GJDM
method.

Table 2

Numbers of modes of substructure A and the highest natural frequencies involved

mA ¼ 130 mA ¼ 150 mA ¼ 200 mA ¼ 250 mA ¼ 300

fmA
(Hz) 12 875 16 545 28 872 52 693 95 703
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were used in this part of the study, together with the corresponding highest natural
frequencies. In all cases, the FRFs of substructure B (the beam) were generated using 30
modes, which meant that the highest natural frequency was 7049 Hz:

The coupling analysis results obtained by using different numbers of high order mode
truncations are shown in Figure 11. This is the same FRF as that shown in Figure 10, the
point FRF, H5z5z: According to the modal analysis of the assembled system finite element
model, there are 43 elastic modes in the displayed frequency range of 0–2000 Hz; but not
all of them are seen in this point FRF plot. It can be noticed in Figure 11 that only three
modes, numbered as 23, 24 and 28, which have the frequency values of 903�7, 927�8 and
1112�3 Hz; respectively, are significantly affected by the high order mode truncations. The
rest of the modes are almost consistent with respect to different numbers of mode
truncation.

It is found that mode 28 in Figure 11 (the one whose natural frequency is at 1112�3 Hz)
is dominated by residuals. Its frequency shifts to a higher value and its amplitude becomes
smaller with regard to the decrease of mA; the number of modes included for generating
FRFs of substructure A, the plate. Further calculations show that if mA is chosen such
that mA5120; this mode will disappear from this FRF plot.

This study shows that the number of modes included in generating the FRFs
for substructure A plays a very important role in the accuracy of the coupling result.
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Figure 11. Investigation of residual effect ðmB ¼ 30Þ: , mA ¼ 120; � � � ;mA ¼ 200; }}, mA ¼ 300:
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Figure 12. Residual FRFs of substructure A.
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The residual FRFs in the frequency range 0–2000 Hz were then generated including
the truncated modes, from mode 131 to 300, and are shown in Figure 12. These
FRFs are, from top to bottom: H5yx5yx

; H5yy5yy
; H5yx5yy

; H5z5yx
; H5z5yy

;H5z5z; H5x5x; H5y5y

and H5x5y:
Comparing the amplitudes of these residual FRFs with those of the FRFs used for

coupling analysis, which are shown in Figure 13, one can see that these residual FRFs are
not negligible even though the truncation frequency is already 6 times of the highest
frequency of interest ð2000 HzÞ:
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Figure 13. FRFs of plate at coupling d.o.f.s.
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Therefore, in principle, the GJDM method is recommended when measured FRFs are
available because they do not have mode truncation error. For analytical coupling analysis,
the improved CMS method, component mode synthesis with joint involved (CMSJ) [10],
should be the first choice. In the cases where FRF coupling method has to be applied, a
large number of modes need to be calculated in order to generate the substructures’ FRFs.

4.2.5. Tolerance to noisy data

The motivation to develop the Jetmundsen method and the GJDM is to permit direct
use of measured frequency response functions. Therefore, it is important to verify that
these methods can work properly when they are supplied with noise-contaminated data.

If 10% random noise is added to the FRF matrices for both substructures A and B, the
coupled structure result obtained from the GJDM previously shown in Figure 10 is shown
here in Figure 14.

Following the same procedure, Figure 15 shows the coupling result when the FRF
matrices of the substructures are contaminated by 20% random noise.

By applying singular-value truncation to the 20% noise case, in which the threshold was
set as e ¼ 10�6; the result shown in Figure 15 can be improved. To justify the quality of the
predicted FRFs which are obtained using noisy FRFs for the substructures, the
correlation between the predicted FRF matrices and the exact FRF matrix (FRAC,
defined in reference [11]) is calculated. The FRAC values shown in Figure 16 are the
correlations of the upper triangle FRF matrices, in which there are 15 FRFs. The
corresponding full FRF matrix is shown in equation (44).

H %CC ¼

H5x5x H5x5y H5x5z H5x5yx
H5x5yy

H5y5x H5y5y H5y5z H5y5yx
H5y5yy

H5z5x H5z5y H5z5z H5z5yx
H5z5yy

H5yx5x H5yx5y H5yx5z H5yx5yx
H5yx5yy

H5yy5x H5yy5y H5yy5z H5yy5yx
H5yy5yy

2
666666666664

3
777777777775
: ð44Þ



0 200 400 600 800 1000 1200 1400 1600 1800 2000
120

100

80

60

40

20

0

20

frequency (Hz)

m
ob

ili
ty

 (
dB

)

_

_

_

_

_

_

Figure 15. Coupling result (GJDM) when 20% noise in input FRFs:� � � � ; exact; }}, 20% noise.
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Figure 14. Coupling result (GJDM) when 10% noise in input FRFs:� � � � ; exact; }}, 10% noise.
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It is shown that GJDM is generally not sensitive to noise. All point FRFs are very well
predicted, even in the 20% noise case. The results which have low FRAC values are
basically those FRFs which have low response levels. The FRAC values increase
significantly when singular-value truncation is applied to the 20% noise case. They are
almost the same as the 10% noise case without the singular-value truncation.
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Figure 17. FRAC of the two coupling methods: , GJDM; , K-J method.
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Figure 16. FRACs: 10% noise; , 20% noise; 20% with s-value truncation.
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4.2.6. Comparison between Jetmundsen method and GJDM

The coupled structure analysis results produced by the Jetmundsen method and the
GJDM are compared under the same conditions: the same numbers of modes are used to
generate the FRFs of the substructures and these FRFs are free of noise. The
FRAC}correlation between the coupling analysis results and the assembled finite
element analysis result}is calculated and displayed in Figure 17.

It is seen that the GJDM is universally superior to the Jetmundsen method in this
example.

5. CONCLUSIONS

The development of a new FRF coupling analysis method, the generalized joint
describing method (GJDM), has been reported and shown to have the following
advantages compared with the conventional Jetmundsen method:

* The joint is completely separated from the main substructures, and joint parameters are
modified independently. The substructures do not need to be reanalyzed with respect to
the variation of joint parameters.

* The number of coupling degrees of freedom in one substructure can be different to that
for another substructure to accommodate non-conforming interfaces [12].

* The joint describing impedance matrix is made independent from the substructures. Its
stiffness and damping can be adjusted to fulfil the requirement of the system response.
This is not only an advantage for substructure coupling analysis but also provide a
technique for damper design in vibration control.
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APPENDIX A: NOMENCLATURE

A;B subscripts denoting substructures A and B
i; c subscripts denoting internal and coupling co-ordinates in substructures
%cc; *cc subscripts denoting coupling co-ordinates in substructures A and B
%CC; *CC subscripts denoting coupling co-ordinates of substructures A and B in the assembly

I subscripts denoting internal co-ordinates in assembly
H frequency response function
F force applied onto the assembly
x displacement vector of substructures
X displacement vector of the assembly
f force applied onto the joint
x displacement vector the joint
Z impedance matrix of joint
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